Weak Pointers and Circular References in C++ 11: Listing 4

A generic solution to circular references.

// circular_ptr.h
#ifndef CIRCULAR_PTR_H_
#define CIRCULAR_PTR_H_

#include <memory>

using namespace std;

template <typename T>
class circular_ptr;

// this header only offers the prototype of this template function.
// Implementors of a concrete types T should provide specific versions, and make this
// function friend to T (see class person in Listing 5).
template <typename T>
circular_ptr<T> *get_circular_ptr(const shared_ptr<T>&);

template <typename T>
class circular_ptr {
public:
  circular_ptr() : strong_{nullptr}, weak_{} {}

  // copy constructor
  circular_ptr(shared_ptr<T> &t) : strong_{nullptr}, weak_{} {
    set(t);
  }

  // copy assignment operator
  circular_ptr& operator=(shared_ptr<T> &t) {
    return set(t);
  }

  shared_ptr<T> get() const {
    if (strong_!=nullptr)
      return strong_;
    else
      return weak_.lock();
  }

  // whether circular_ptr uses a weak link to refer to a T instance.
  bool is_weak() {
    return !(weak_.expired());
  }

  // releases its link, whichever it is (strong or weak).
  bool reset() {
    // looks for a weak link that directly or not points to the this circular_ptr
    circular_ptr *weak_one = find_weak_link_reaching_this();

    // if found, means that there was a circular reference. That circular reference is
    // being broken in this reset. Consequently, the weak ptr must become strong.
    if (weak_one) {
        weak_one->strong_ = weak_one->weak_.lock();
        weak_one->weak_.reset();
      }

    strong_.reset();
    weak_.reset();

    return (weak_one);
  }

  bool operator==(const circular_ptr &other) const {
    return get()==other.get();
  }

  bool operator!=(const circular_ptr &other) const {
    return !(*this==other);
  }
protected:
  // this function is O(n) in non-deterministic cases. A deterministic circularity
  // scenario may override this function to get constant order of complexity.
  virtual bool is_this_reachable_from(const shared_ptr<T> &start) const {
    shared_ptr<T> current = start, currents_next;

    // it basically performs a walkthrough from start argument to see whether it reaches
    // this instance or null. If the former, returns true. False otherwise.
    if (current!=nullptr) {
        do {
            currents_next = get_circular_ptr(current)->get();
            if ((currents_next!=nullptr)&&(this==get_circular_ptr(currents_next))) {
                return true;
              }

            current = currents_next;
          }
        while ((current!=nullptr)&&(current!=start));
      }

    return false;
  }

  // same comment: if circularity is deterministic, this function could be overridden and
  // thus optimized
  virtual circular_ptr *find_weak_link_reaching_this() {
    circular_ptr *current = this, *weak_one = nullptr;
    // provided that there's no strong circular reference, either the chain ends in nullptr
    // or we reach a member that is weak
    while (current!=nullptr) {
        if (current->is_weak()) {
            weak_one = current;
            // now, it must be confirmed that *this is reachable from weak_one.
            do {
                if ((current = get_circular_ptr(current->get()))==this)
                  return weak_one;
              }
            while (current!=weak_one);
            // provided that weak_one is reachable from current, as weak_one is weak
            // because participates in a loop.
            break;
          }

        if (shared_ptr<T> t = current->get()) current = get_circular_ptr(t);
        else break;
      }

    return nullptr;
  }
private:
  shared_ptr<T> strong_;
  weak_ptr<T> weak_;

  circular_ptr& set(shared_ptr<T> &t) {
    if (t==nullptr) {
        reset();
      }
    else {
        bool cycle_already_detected = false;

        if (get()!=nullptr) {
            cycle_already_detected = reset();
          }

        // checking for cycle_already_detected helps avoid an extra round
        if ((cycle_already_detected)||( is_this_reachable_from(t)))
          weak_ = t;
        else
          strong_ = t;
      }

    return *this;
  }
};

#endif /* CIRCULAR_PTR_H_ */

About the Author

Diego Dagum is a software architect and developer with more than 20 years of experience. He can be reached at [email protected].

comments powered by Disqus

Featured

  • AI for GitHub Collaboration? Maybe Not So Much

    No doubt GitHub Copilot has been a boon for developers, but AI might not be the best tool for collaboration, according to developers weighing in on a recent social media post from the GitHub team.

  • Visual Studio 2022 Getting VS Code 'Command Palette' Equivalent

    As any Visual Studio Code user knows, the editor's command palette is a powerful tool for getting things done quickly, without having to navigate through menus and dialogs. Now, we learn how an equivalent is coming for Microsoft's flagship Visual Studio IDE, invoked by the same familiar Ctrl+Shift+P keyboard shortcut.

  • .NET 9 Preview 3: 'I've Been Waiting 9 Years for This API!'

    Microsoft's third preview of .NET 9 sees a lot of minor tweaks and fixes with no earth-shaking new functionality, but little things can be important to individual developers.

  • Data Anomaly Detection Using a Neural Autoencoder with C#

    Dr. James McCaffrey of Microsoft Research tackles the process of examining a set of source data to find data items that are different in some way from the majority of the source items.

  • What's New for Python, Java in Visual Studio Code

    Microsoft announced March 2024 updates to its Python and Java extensions for Visual Studio Code, the open source-based, cross-platform code editor that has repeatedly been named the No. 1 tool in major development surveys.

Subscribe on YouTube