

Which SCM? The Pros
and Cons of Git and
Subversion

Table of Contents

Has Git Killed Subversion & CVS? ...3

Subversion ...3

CVS ...3

Git ..3

Overall ..4

What VCS to Choose? ..4

Subversion or Git? Decisions, decisions …. ..6

The short form ...6

The Basics ..6

But first, some demythologization ..7

So, what's different? ..7

Un-recommendations ..8

For More Information ..9

 Which SCM? The Pros and Cons of Git and SubversionHas

Has Git Killed Subversion & CVS?
Video killed the radio star, and the Internet killed both. Many believe Git is on it’s way to killing Subversion
(which all but killed CVS), but let’s let the numbers speak for themselves.

There are over 20 different open-source and commercial version control systems (VCS) in use today – some
getting more media coverage than others. In particular, distributed VCS (DVCS) like Git and Mercurial are
attracting a lot of attention due to the popularity of Linus Torvald, GitHub and the recent acquisition of
Bitbucket by Atlassian. I wondered what developers are actually using for their software development
process so I started my research.

I pulled data on the Codesion VCS’s in use – Subversion, Git and CVS. Interestingly enough, the old dinosaur CVS
is still being used for new projects today, but showing a trending decline in favor of Subversion and Git. While
this analysis only looks at the data on the Codesion system, it seems to be pretty reflective of the overall
industry trends. Perhaps I’ll have the time someday to put together a crawler which surveys VCS’s running
public web servers to gauge uptake beyond Codesion’s data set.

Subversion
Subversion is easily the most popular and its usage is growing larger each month. Its centralized architecture
make it easy to maintain a security hierarchy, access control, and backups, which is why it's preferred in many
enterprise organizations over Perforce, VSS, and ClearCase (see figure 2 below).

Subversion is still widely popular amongst the open source community, most notably the Apache Software
Foundation, FreeBSD, GCC, Django, Ruby, ExtJS, PHP, Python and MediaWiki.

CVS
CVS is being used for new projects, proving that the once dominate open-source VCS is still preferred by a
segment of developers. Perhaps its the familiarity of CVS that keeps that keeps attracting people, or perhaps
some just don't need all the bells and whistles that newer VCS's offer. CVS's core strength is in it's simplicity to
keep revisions of code and share it with colleagues.

Either way, it's interesting all the same to compare the buzz of the newer systems with what people are actually
using. That said the usage is definitely trending downwards and I'd expect it to be completed replaced in the
next couple of years.

Git
Usage of Git with Codesion has remained pretty steady since we launched the beta in mid-2010. It's hard to
draw too much from this trend without considering what is happening with other Git hosting providers.
According to a 2009 Dr. Dobbs survey published by Forrester Research (see figure 2 below), Git ranks as the 7th
most used VCS with 2.7% of those surveyed ranking it as their primary SCM. The survey included 1,020
developers who spend at least 30% of their time writing code.

If the constant media attention is a leading indicator, Git continues to gain in popularity - especially amongst
the open-source, OSX and Linux development community. I fully expect this trend to continue upwards for Git
over the next year. It still remains to be seen how Git will be adopted in the enterprise.

http://www.cloudforge.com/dpaas/index.php
http://www.cloudforge.com/pricing/index.php
http://www.cloudforge.com/dpaas/index.php
http://www.cloudforge.com/pricing/index.php
http://www.cloudforge.com/

4 CollabNet, Inc. All rights reserved.

Overall
There does seem to be an explosion of core open source developer tools these days, not just in the (D)VCS
space but also in other areas like databases, where there are more than 70 open source databases. I still
remember only a few years ago when all you had to choose from was MySQL, PostgreSQL, SQLite and Berkeley
DB. I expect this list to consolidate as clear winners emerge, and other fall behind due to lack of uptake,
founding developers loosing interest or projects being abandoned. I suspect the same will be the case for the
(D)VCS world, as a select few are adopted by the developer community, both in the private sector and open
source community.

Subversion still attracts the largest number of developers world-wide, but Git and Mercurial are the fastest
growing. I fully expect Git and Mercurial to continue up the adoption path as DVCS become more appealing.
Subversion will hold strong given its centralized architecture, which many organizations prefer for the reasons
pointed out above. I expect each of these 3 systems (SVN, Git, and Hg) to live happily along side each other
filling different needs amongst developers, much like the databases of old.

What VCS to Choose?
If you're new to version control make a decision based on the system alone. You should consider what type of
software you're developing (open source, proprietary, small or large project), what development practices
you're using, and what internal security policies exist in your organization. Your answers will help lead you
down the path to the best VCS for your project.

Fig 1: Graph showing the number of new projects created each month for each VCS. Data sourced from
Codesion.com

http://en.wikipedia.org/wiki/Category:Open_source_database_management_systems

 Which SCM? The Pros and Cons of Git and SubversionHas

Fig 2: VCS usage patterns across a variety of systems. Source: Jeffrey Hammond, Forrester research

http://blogs.forrester.com/application_development/2010/01/forrester-databyte-developer-scm-tool-adoption-and-use.html

6 CollabNet, Inc. All rights reserved.

Subversion or Git? Decisions, decisions ….
by Jack Repenning

Are you facing a difficult choice between version control systems? Are you having trouble sorting out the
alternatives? Are you bewildered by all the opinions you find on Google? Let’s see if I can help sort this all out.

CollabNet (the original stewards of the Subversion project) provides both Subversion and Git, either through
our enterprise TeamForge product or through our CloudForge Platform. We think there’s a place in the universe
for each. Here’s how to find yourself in that universe.

The short form
Here are some specific recommendations. If you want to stop reading at the end of this section, you should
make out just fine.

• If you have compelling requirements for a single, certain, master copy of your work, use Subversion.
You can do this with Git, so long as there are no slip-ups. But you can't do anything else with Subversion
(slip-ups or no), and "compelling requirements" like Sarbanes-Oxley are happier with guarantees than
possibilities.

• If you plan to maintain parallel, largely shared but permanently somewhat different lines of the same
product, use Git. One common example: perhaps you have a large product that you customize for each
customer. The customizations are permanent, and generally not shared among code lines, but most of
the code is common to all. Git was designed for just this case (in Git terms, local customizations to the
common core, and occasional feature or bug-fix contributions back up-tree).

Neither of those? Take your pick, you should be fine with either tool.

The Basics
What do you want from your version control system? A lot of this is the same for everyone, and both tools
accomplish these tasks just fine. If all you care about is the basics, you could easily just flip a coin and get on
with your work, confident that your choice would be sound. These "basics" include:

• Store all versions of your files ("version control")

• Associate versions of each file with appropriate versions of all other files ("configuration management")

• Allow many people to work on the same files, toward a common goal or release ("concurrency")

• Allow groups of people to work on substantially the same files, but each group towards its own goal or
release ("branching")

• Recover, at any time, a coherent configuration of file versions that correspond to some goal or release,
either for investigation or extension like bug fixing ("release management")

http://blogs.collab.net/author/jack-repenning
http://www.collab.net/
http://www.cloudforge.com/dpaas/index.php
http://www.cloudforge.com/agile-enterprise/index.php
http://www.cloudforge.com/why-cloudforge/index.php

 Which SCM? The Pros and Cons of Git and SubversionHas

Both systems do all these things quite well. If these things are truly all you care about … flip that coin! All the
discussion and decision has to do with other details, details that are always secondary to the basics, but can
become crucial to particular projects or environments.

So, if you haven't flipped that coin and gone away, let's look at the differences.

But first, some demythologization
Here are a few things you may have heard that just aren't true, or aren't true any longer:

• Git hates windows. No, it doesn’t. It used to, but now there are good Git integrations with Windows
Explorer (TortoiseGIT, SmartGIT) and most of the major IDEs (Visual Studio, Eclipse, Netbeans), and you
no longer need to use the Unix emulation environment Cygwin.

• Git is only for hackers. As a Unix-centric, command-line only tool, Git was originally anathema for many
workers. But with all the GUI integrations, it’s considerably more friendly, within reach of nearly
everyone (see Windows integrations above, plus non-Windows tools like GitX, Coda via GitX or Tower,
Emacs).

• Git is hard to learn. Well, it's a lot easier to learn now, anyway, thanks to those GUIs, and to
improvements in the command-line UI and documentation.

On the other hand

• Subversion is slow on Windows. The latest Subversion releases, up to the current 1.7, have made great
strides in Windows performance.

• Subversion merging is hard. Well, it's a lot easier now, anyway, thanks to the continuing progress on
"merge tracking."

So, what's different?
As you've surely heard, the key difference is that Subversion is "centralized," while Git is "distributed." You can
go many other places to learn about what that means in their implementation, I don't spend time on that here.
But I will talk about why it matters to you.

Local versioning

Git's distributed model means that you have full version control operations purely locally on your workstation.
Of course, the changes you make locally are not visible to anyone else, until you do something else (Git's "push"
or "pull"), but you can check changes in so they're not lost, create branches, merge among branches, back up to
older versions, and browse and compare versions - all without a network. The one cost in all that is, you have to
learn some additional commands (push, pull, clone) and workflows, if you ever expect anyone else to see your
work. You can do everything locally that any version control system can do … and you also have extra steps
required to make your work visible to others, kind of an inescapable trade-off. On balance, local versioning is a
significant convenience for the developer, and a big part of the popularity of Git.

Guaranteed centralization

Most processes have some reason to want one copy of everything, somewhere, that's reliably known to be "the
official version." With Subversion, that's the central repository. With Git, that's … some repository or other: the
tool doesn't privilege any one repository over another, but users and conventions can. With Git, you have to
remember to push or pull all changes into the designated central repository - not hard to remember, especially
if you support it with other conventions, such as only building releases from the central, but still an extra step.
With Subversion, there's nothing to remember or agree to: there is only one repository. By definition, anything
that's checked in at all is checked in to the central. One place where this can become particularly important is in
"governance," where external constraints like Sarbanes-Oxley or escrow contracts demand hands-off
guarantees. On balance, enterprises with governance constraints value the guarantees of Subversion.

http://code.google.com/p/tortoisegit/
http://www.syntevo.com/smartgit/index.html
http://code.google.com/p/gitextensions/
http://eclipse.org/egit/
http://netbeans.org/kb/docs/ide/git.html
http://gitx.frim.nl/
http://panic.com/coda/
http://www.git-tower.com/
http://alexott.net/en/writings/emacs-vcs/EmacsGit.html

8 CollabNet, Inc. All rights reserved.

(Governance, traceability, ALM, and DevOps all require broader support than just the code and files, of course:
there has to be integration among the code repository, the tests, the deployed product, and the tracking
system. Fortunately, CollabNet now integrates both Subversion and Git with these other components.)

Throw-away work

Somewhat paradoxically, there are times when you want to throw away (or keep private) some work. Git is
better at throwing things away than Subversion is: you keep the potentially throw-away work in its own
repository until you decide whether to make it official. If you decide to toss it, there are virtually no left-overs in
the repositories you keep. By contrast, in Subversion, everything goes into the one central repository, and you
don't have that same option. Typically in Subversion, you don't actually "throw away" such work, but only leave
it on some branch you never look at. But it's still there, taking up space, and possibly cluttering the history
browser. The possibility of throw-away work is a fairly big consideration in open-source work (and in fact it was
one of the key design considerations for Git), but rather less so for enterprise work (where throw-away work is
also throw-away salaries, equipment, lighting, and all the other employee expenses), so enterprises typically
avoid ever doing it in the first place. I wrote about handling throw-away work at some length a while back.

Un-recommendations
Some things are possible, but I wouldn't recommend them - at least, not to someone who has to ask:

• Git-SVN. Git is able to pull files out of a Subversion repository, store them in a Git repository (allowing
all that local version control, and some inter-git-repository push/pull/merge), and then push the results
back into Subversion. It sounds like the best of both worlds, doesn't it? But you end up having to be an
above-average expert in both systems, and parts of the workflow are very slow. Some folks really like it.
Maybe you would, too. But it's not what you'd call "mainstream."

• Cygwin. Cygwin is a system for providing a lot of Unix-like capabilities on a Windows system. Early Git
Windows implementations ran inside Cygwin. Again, this ends up forcing you to be an above-average
expert in two very different systems. If you're already steeped in Unix and Windows both, it can be
handy. But it's a high price to pay for just adding a little Git. Fortunately, Git Windows installation no
longer requires Cygwin.

So, which one's for you? Try a free, fully functional 30 day trial of Subversion and Git on CloudForge to help
make this choice.

http://blogs.collab.net/oncollabnet/2010/02/whats-behind-subversions-dominance/
https://www.cloudforge.com/try

© 2012 CollabNet, Inc., All rights reserved.
CollabNet is a in the US and other countries. All
other trademarks, brand names, or product
names belong to their respective holders.

CollabNet, Inc.
8000 Marina Blvd.,
Suite 600
CA 94005

Tel +1 650 228 2500
Fax +1 650 228 2501
www.collab.net
info@collab.net

Blog blogs.collab.net
Twitter twitter.com/collabnet
Facebook www.facebook.com/collabnet
LinkedIn www.linkedin.com/company/collabnet-inc

About CollabNet
CollabNet is the recognized leader in enterprise cloud development and Agile ALM, with more than 7,000 global customers that range
from single workgroups to large enterprises. Its deep open source roots include the creation of Subversion, the industry leading version
control system with millions of users. CollabNet helps enterprise customers build and deploy better software through its focus on
collaboration, enterprise Agile methods and cloud development and computing. Many CollabNet customers improve productivity by as
much as 70 percent, while reducing costs by 80 percent. Its solutions include TeamForge®, the industry-leading Agile ALM platform for
distributed development, ScrumWorks® Pro for Agile project management, Subversion Edge for managed source code management,
Codesion for cloud-based development and deployment, and a range of Agile-based training, consulting and transformation services.
For more information, please visit (www.collab.net)

CONTACT US
Corporate Headquarters
8000 Marina Blvd, Suite 600
Brisbane, CA 94005
United States
Phone: +1 (650) 228-2500
Toll Free: +1 (888) 778-9793

For More Information
CollabNet is your one-stop shop for enterprise-grade Git management.
Subscribe to Git Blogs: http://blogs.collab.net/email-subscribe?catName=Git
24/7 Git Support: http://www.collab.net/downloads/git-enterprise
Enterprise Git Management: http://www.collab.net/downloads/git-enterprise
Git Toolkit: www.collab.net/gotgit<http://www.collab.net/gotgit>

Topics
trending now
Many of the latest technology
announcements have implications
for PaaS and cloud development
that will serve agile businesses
everywhere.

• Enterprise Cloud Development,
www.collab.net/ecd

• Continuous Integration,
www.collab.net/getci

• 5 Things your Development Team
need to be doing now,
www.collab.net/5things

http://www.collab.net/
mailto:info@collab.net
http://blogs.open.collab.net/oncollabnet/
http://twitter.com/CollabNet
http://www.facebook.com/collabnet
http://www.linkedin.com/company/6774
http://blogs.collab.net/email-subscribe?catName=Git24/7
http://blogs.collab.net/email-subscribe?catName=Git24/7
http://www.collab.net/downloads/git-enterprise
http://www.collab.net/downloads/git-enterprise
http://www.collab.net/gotgit
http://www.collab.net/gotgit
http://www.collab.net/ecd
http://www.collab.net/getci
http://www.collab.net/5things

