News

ML.NET Machine Learning Framework Updated

Microsoft's open source machine learning framework, ML.NET, has been updated to version 1.2, continuing to add features to help .NET developers use their familiar tools and languages to infuse ML functionality into their applications.

ML.NET includes components such as Model Builder (a Visual Studio UI tool), a CLI (command-line interface) and AutoML (Automated Machine Learning used to build custom models).

Having only hit v1.0 status in May, the framework continues to mature as Microsoft adds new features and functionality for its multiple use cases that include:

  • Sentiment analysis
  • Product recommendation
  • Price prediction
  • Customer segmentation
  • Object detection
  • Fraud detection
  • Sales spike detection
  • Image classification
  • Sales forecasting

In a July 17 announcement post, Microsoft's Cesar De la Torre, program manager, said ML.NET 1.2 highlights include:

  • General availability of TimeSeries support for forecasting and anomaly detection:
    "Developers can use the Microsoft.ML.TimeSeries package for many scenarios such as: detecting spikes and changes in product sales using an anomaly detection model or creating sales forecasts which could be affected by seasonality and other time related context."
  • General availability of ML.NET packages to use TensorFlow and ONNX models:
    "ML.NET has been designed as an extensible platform so that you can consume other popular ML models such as TensorFlow and ONNX models and have access to even more machine learning and deep learning scenarios, like image classification, object detection, and more."
  • Easily integrate ML.NET models in web or serverless apps with Microsoft.Extensions.ML integration package (preview):
    "This package makes it easier to integrate loading ML.NET model for scoring in ASP.NET apps, Azure Functions and web services. Specifically, the package allows a developer to use Microsoft.Extensions.ML for loading the ML.NET model using Dependency Injection, and optimizing the model’s execution and performance in multi-threaded environments such as ASP.NET Core apps."
  • ML.NET CLI updated to 0.14 (preview):
    "You can use the ML.NET CLI to automatically generate an ML.NET model and underlying C# code. You can run the ML.NET CLI on any command-prompt (Windows, Mac, or Linux)."
  • Model Builder updates:
    • Expanding support to .txt files and more delimiters for values
    • No limits on training data size
    • Smart defaults for training time for large datasets
    • Improved model consumption experience

More information is available in the release notes for this backwards-compatible release.

About the Author

David Ramel is an editor and writer at Converge 360.

comments powered by Disqus

Featured

  • Compare New GitHub Copilot Free Plan for Visual Studio/VS Code to Paid Plans

    The free plan restricts the number of completions, chat requests and access to AI models, being suitable for occasional users and small projects.

  • Diving Deep into .NET MAUI

    Ever since someone figured out that fiddling bits results in source code, developers have sought one codebase for all types of apps on all platforms, with Microsoft's latest attempt to further that effort being .NET MAUI.

  • Copilot AI Boosts Abound in New VS Code v1.96

    Microsoft improved on its new "Copilot Edit" functionality in the latest release of Visual Studio Code, v1.96, its open-source based code editor that has become the most popular in the world according to many surveys.

  • AdaBoost Regression Using C#

    Dr. James McCaffrey from Microsoft Research presents a complete end-to-end demonstration of the AdaBoost.R2 algorithm for regression problems (where the goal is to predict a single numeric value). The implementation follows the original source research paper closely, so you can use it as a guide for customization for specific scenarios.

  • Versioning and Documenting ASP.NET Core Services

    Building an API with ASP.NET Core is only half the job. If your API is going to live more than one release cycle, you're going to need to version it. If you have other people building clients for it, you're going to need to document it.

Subscribe on YouTube