More C++ Classes: Copy and Move Semantics: Listing 3

A binary tree with copy and move semantics.

// unbalanced_binary_tree.h
#ifndef UNBALANCED_BINARY_TREE_H
#define UNBALANCED_BINARY_TREE_H

// uncomment this line to enable move semantics; comment it to disable it.
//#define MOVE_SEMANTICS

#include <memory>
#include <initializer_list>
#include <vector>
#include <iostream>
#include <utility>

using namespace std;

namespace unbalanced_binary_tree {
  template <typename T>
  class tree
  {
  public:
  // default constructor. Empty tree.
  tree() : root_{ nullptr }
  { cout << "Creating empty tree (default constructor)." << endl; }

  // this constructor makes a tree from an array of elements.
  tree(const initializer_list<T> elements) : tree{}
  {
    cout << "Populating tree from initializer list (" << elements.size() << " elements)..." << endl;

    for (auto element : elements)
    *this << element;
    }

    // copy constructor.
    tree(const tree<T>& other) : tree{}
    {
      cout << "Beginning tree copy-construction..." << endl;

      // if the other tree isn't empty, it's copied from its root.
      if (!other.is_empty()) root_.reset(new node{*(other.root_)});
    }

#ifdef MOVE_SEMANTICS
    // move constructor
    tree(tree<T>&& other) : root_{ move(other.root_) }
    { cout << "Last tree constructed with move-constructor." << endl; }
#endif // MOVE_SEMANTICS

    // destructor.
    ~tree() { cout << "Deleting tree..." << endl; };

    // copy assignment.
    tree& operator=(const tree<T>& other)
    {
      cout << "Beginning tree copy-assignment..." << endl;

      if (this == &other) return *this; // handle self-assignment

      // if the tree at the left-side of the assignment isn't empty,
      // it's cleared. Existing nodes are deleted.
      if (!is_empty())
      {
        cout << "Clearing out previous content at left-side..." << endl;
        root_.reset(nullptr);
      }

      // if the other tree isn't empty, it's copied from its root.
      if (!other.is_empty()) root_.reset(new node{*(other.root_)});

      return *this;
    }


#ifdef MOVE_SEMANTICS
    // move assignment
    tree& operator=(tree<T>&& other)
    {
      cout << "Beginning tree move-assignment..." << endl;

      // if the tree at the left-side of the assignment isn't empty,
      // it's cleared. Existing nodes are deleted.
      if (!is_empty())
      {
        cout << "Clearing out previous content at left-side..." << endl;
        root_.reset(nullptr);
      }
      // if the other tree isn't empty, its root is moved.
      if (!other.is_empty())
      {
        cout << "Moving root to the left-side." << endl;
        root_ = move(other.root_);
      }

      return *this;
    }
#endif // MOVE_SEMANTICS

    // pushes an element to the tree. At the root if empty
    // Or in the left branch if less or equal than the root value. In the right branch otherwise.
    friend tree& operator<<(tree& t, const T element)
    {
      // if the tree is empty, the root is just inaugurated.
      if (t.is_empty()) t.root_.reset(new node{element});
      // otherwise, the element is pushed from the root downward
      else (t.root_)->push_back(element);

      return t;
    }

    // true if the tree is not empty.
    bool is_empty() const
    { if (root_) return false; else return true; }

    // returns the tree elements in a vector. Order is undetermined.
    vector<T> to_vector() const
    {
      vector<T> v;

      if (!is_empty()) push_branch_to_vector(v, *root_);

      return v;
    }
  private:
    // Type node as a nested class of tree
    class node {
    public:
      // there's no default constructor
      // constructs a single node with the received value.
      node(const T value) : node_value_{value}, left_branch_{nullptr}, right_branch_{nullptr}
      { cout << "Creating leaf(" << value << ")." << endl; }

      // copy-constructor
      node(const node& other) : node_value_{other.node_value_},
        left_branch_{other.left_branch_ ? new node{*(other.left_branch_)} : nullptr},
        right_branch_{other.right_branch_ ? new node{*(other.right_branch_)} : nullptr}
      { cout << "Node(" << node_value_ << ") copy-constructed." << endl; }

      // destructor
      ~node() { cout << "Destroying node(" << node_value_ << ")." << endl; };

      // no copy-assignment
      node& operator=(const node& other) = delete;

      T value() const
      { return node_value_; }

      // pushes the received value to the left branch if less or equal than the node value. To the right branch otherwise.
      node& push_back(const T value) {
        if (value<=node_value_) {
          // if the left branch is not empty, the value is recursively pushed into.
          if (left_branch_) { left_branch_->push_back(value); }
          // if empty, it just gets inaugurated.
          else
          {
            cout << "At the left branch of node(" << node_value_ << "): ";
            left_branch_.reset(new node{value});
          }
        } else {
          // same comments about left_branch_ apply at the right one.
          if (right_branch_) { right_branch_->push_back(value); }
          else
          {
            cout << "At the right branch of node(" << node_value_ << "): ";
            right_branch_.reset(new node{value});
          }
        }

        return *this;
      }

      friend void push_branch_to_vector(vector<T>& v, const node& n)
      {
        v.push_back(n.value());
        if (n.left_branch_) push_branch_to_vector(v, *n.left_branch_);
        if (n.right_branch_) push_branch_to_vector(v, *n.right_branch_);
      }
    private:
      T node_value_;
      unique_ptr<node> left_branch_, right_branch_;
    };

    unique_ptr<node> root_;
  };
}

#endif // UNBALANCED_BINARY_TREE_H



// main.cpp
#include "unbalanced_binary_tree.h"
#include <string>
#include <vector>

using namespace unbalanced_binary_tree;
using namespace std;

tree<unsigned> make_word_size_tree(const tree<string>& word_tree) {
  cout << "Inside function make_word_size_tree()..." << endl;
  vector<string> words = word_tree.to_vector();

  cout << "tree<unsigned> t; // local variable declaration" << endl;
  tree<unsigned> t;

  for (auto word : words)
    t << word.size();

  cout << "Leaving function make_word_size_tree(). Local tree<unsigned> t about to lose visibility..." << endl;
  return t;
}

int main(int argc, char* argv[]) {
  cout << "tree<unsigned> integer_tree = { 1, 3, 5, 4 };" << endl;
  tree<unsigned> integer_tree = { 1, 3, 5, 4 };

  cout << endl << "tree<unsigned> it2 = integer_tree;" << endl;
  tree<unsigned> it2 = integer_tree;

  cout << endl << "tree<string> lincoln_tree;" << endl;
  tree<string> lincoln_tree;

  cout << "lincoln_tree << \"give\" << \"me\" << \"six\" << (...) << \"axe\";" << endl;
  lincoln_tree << "give" << "me" << "six" << "hours"
    << "to" << "chop" << "down" << "a" << "tree"
    << "and" << "I" << "will" << "spend" << "the" << "first" << "four"
    << "sharpening" << "the" << "axe";

  cout << endl << "integer_tree = make_word_size_tree(lincoln_tree);" << endl;
  integer_tree = make_word_size_tree(lincoln_tree);

  cout << endl << "it2 = integer_tree;" << endl;
  it2 = integer_tree;

  cout << endl << "Function main() finishing. Variables integer_tree, it2 and lincoln_tree about to lose visibility." << endl;
}

About the Author

Diego Dagum is a software architect and developer with more than 20 years of experience. He can be reached at [email protected].

comments powered by Disqus

Featured

  • Microsoft Revamps Fledgling AutoGen Framework for Agentic AI

    Only at v0.4, Microsoft's AutoGen framework for agentic AI -- the hottest new trend in AI development -- has already undergone a complete revamp, going to an asynchronous, event-driven architecture.

  • IDE Irony: Coding Errors Cause 'Critical' Vulnerability in Visual Studio

    In a larger-than-normal Patch Tuesday, Microsoft warned of a "critical" vulnerability in Visual Studio that should be fixed immediately if automatic patching isn't enabled, ironically caused by coding errors.

  • Building Blazor Applications

    A trio of Blazor experts will conduct a full-day workshop for devs to learn everything about the tech a a March developer conference in Las Vegas keynoted by Microsoft execs and featuring many Microsoft devs.

  • Gradient Boosting Regression Using C#

    Dr. James McCaffrey from Microsoft Research presents a complete end-to-end demonstration of the gradient boosting regression technique, where the goal is to predict a single numeric value. Compared to existing library implementations of gradient boosting regression, a from-scratch implementation allows much easier customization and integration with other .NET systems.

  • Microsoft Execs to Tackle AI and Cloud in Dev Conference Keynotes

    AI unsurprisingly is all over keynotes that Microsoft execs will helm to kick off the Visual Studio Live! developer conference in Las Vegas, March 10-14, which the company described as "a must-attend event."

Subscribe on YouTube