Improved Permutations with the BigInteger Data Type: Listing 4

Complete demo program code.

using System;
using System.Numerics;


namespace ImprovedPermutations
{
  class PermutationsProgram
  {
    static void Main(string[] args)
    {
      Console.WriteLine("\nBegin improved permutations with BigInteger demo\n");

      string[] names = new string[] { "Adam", "Barb", "Carl" };
      Permutation p2 = new Permutation(3); // 0th
      p2 = p2.Successor(); // 1
      p2 = p2.Successor(); // 2
      p2 = p2.Successor(); // 3
      p2 = p2.Successor(); // 4
      names = p2.ApplyTo(names);
      Console.WriteLine("\nThe 4th permutation element applied to 'Adam', 'Barb', 'Carl' is:");
      for (int i = 0; i < names.Length; ++i)
        Console.Write(names[i] + " ");
      Console.WriteLine("\n");



      int n = 3;
      Permutation p1 = new Permutation(n);
      Console.WriteLine("All permutations for order n = 3 are:\n");
      int ct = 0;
      while (p1 != null)
      {
        Console.WriteLine(ct + ": " + p1.ToString());
        p1 = p1.Successor();
        ++ct;
      }

      //Permutation p2 = new Permutation(n);
      //string[] names = new string[] { "Adam", "Barb", "Carl" };
      //p2 = p2.Element(4);
      //names = p2.ApplyTo(names);
      //Console.WriteLine("\nThe 4th permutation element applied to 'Adam', 'Barb', 'Carl' is:");
      //for (int i = 0; i < names.Length; ++i)
      //  Console.Write(names[i] + " ");
      //Console.WriteLine("\n");

      n = 30;
      BigInteger nFactorial = Permutation.Factorial(n);
      Console.WriteLine("The .NET int.MaxValue is " + int.MaxValue.ToString("#,###"));
      Console.WriteLine("\nFor a permutation with order n = 30 there are n! = \n");
      Console.WriteLine(nFactorial.ToString("#,###"));
      Console.WriteLine("\npossible permutation elements.\n");

      Permutation p3 = new Permutation(n);
      BigInteger k = BigInteger.Parse("999999999999999999999999999999");
      p3 = p3.Element(k);
      Console.WriteLine("\nThe " + k.ToString("#,###") + "th element for order n = 30 is:");
      Console.WriteLine(p3.ToString());

      Console.WriteLine("\nEnd permutations demo\n");
      Console.ReadLine();
    }
  } // class PermutationsProgram

  public class Permutation
  {
    private int n; // order
    private int[] data;

    public Permutation(int n)
    {
      this.n = n;
      this.data = new int[n];
      for (int i = 0; i < n; ++i)
        this.data[i] = i;
    }

    public static BigInteger Factorial(int k)
    {
      if (k == 0) return 1;
      BigInteger ans = 1;
      for (int i = 1; i <= k; ++i)
        ans *= i;
      return ans;
    }

    public Permutation Successor()
    {
      if (data[0] == n - 1 && data[n - 1] == 0)
        return null;

      Permutation result = new Permutation(this.n);

      for (int idx = 0; idx < result.n; ++idx)  // copy curr data into result
        result.data[idx] = this.data[idx];
 
      int left, right;

      left = n - 2;  // Find left value 
      while ((result.data[left] > result.data[left + 1]) && (left >= 1))
        --left;

      right = n - 1;  // find right; first value > left
      while (result.data[left] > result.data[right])
        --right;

      int tmp = result.data[left];  // swap [left] and [right]
      result.data[left] = result.data[right];
      result.data[right] = tmp;

      int i = left + 1;              // order the tail
      int j = n - 1;

      while (i < j)
      {
        tmp = result.data[i];
        result.data[i++] = result.data[j];
        result.data[j--] = tmp;
      }

      return result;
    }

    public string[] ApplyTo(string[] arr)
    {
      string[] result = new string[n];
      for (int i = 0; i < n; ++i)
        result[i] = arr[data[i]];
      return result;
    }

    public Permutation Element(BigInteger k)
    {
      if (k >= Factorial(this.n))
        throw new Exception("k too large in Element");
      Permutation result = new Permutation(this.n);

      int[] factoradic = new int[this.n]; // factoradic of k

      for (int j = 1; j <= n; ++j)  // note: skip [0]
      {
        factoradic[n - j] = (int)(k % j);  // remainder always an int
        k /= j;
      }

      for (int i = 0; i < n; ++i)
        ++factoradic[i];
 
      result.data[n - 1] = 1; // last value set to 1

      for (int i = n - 2; i >= 0; --i)
      {
        result.data[i] = factoradic[i];  // copy factoradic
        for (int j = i + 1; j < n; ++j)  // inc all values to right . . 
        {
          if (result.data[j] >= result.data[i]) // that are < factoradic
            ++result.data[j];
        }
      }

      for (int i = 0; i < n; ++i) // make result 0-based
        --result.data[i];

      return result;
    }

    public override string ToString()
    {
      string s = "( ";
      for (int i = 0; i < data.Length; ++i)
        s += data[i] + " ";  // consider StringBuilder
      s += ")";
      return s;
    }

  } // class Permutation


} // ns

About the Author

Dr. James McCaffrey works for Microsoft Research in Redmond, Wash. He has worked on several Microsoft products including Azure and Bing. James can be reached at [email protected].

comments powered by Disqus

Featured

  • Compare New GitHub Copilot Free Plan for Visual Studio/VS Code to Paid Plans

    The free plan restricts the number of completions, chat requests and access to AI models, being suitable for occasional users and small projects.

  • Diving Deep into .NET MAUI

    Ever since someone figured out that fiddling bits results in source code, developers have sought one codebase for all types of apps on all platforms, with Microsoft's latest attempt to further that effort being .NET MAUI.

  • Copilot AI Boosts Abound in New VS Code v1.96

    Microsoft improved on its new "Copilot Edit" functionality in the latest release of Visual Studio Code, v1.96, its open-source based code editor that has become the most popular in the world according to many surveys.

  • AdaBoost Regression Using C#

    Dr. James McCaffrey from Microsoft Research presents a complete end-to-end demonstration of the AdaBoost.R2 algorithm for regression problems (where the goal is to predict a single numeric value). The implementation follows the original source research paper closely, so you can use it as a guide for customization for specific scenarios.

  • Versioning and Documenting ASP.NET Core Services

    Building an API with ASP.NET Core is only half the job. If your API is going to live more than one release cycle, you're going to need to version it. If you have other people building clients for it, you're going to need to document it.

Subscribe on YouTube