News

Microsoft Offers Engineer to Help You Take ML.NET into Production

Microsoft's latest update of its ML.NET open source machine learning framework comes with a twist: The company is offering to provide an engineer for one-on-one help to get it working in production use.

Announced last May at the 2018 Build developer conference, ML.NET helps developers apply their .NET and C# or F# skills to integrate custom machine learning into an application. It aims to simplify the process of developing or tuning machine learning models for everyone, even if they don't have prior expertise in such tuning.

These ML models can be used for projects needing functionality such as sentiment analysis, recommendation, image classification and so on.

ML.NET 0.11 was described as a stability-focused release, and even though it appears to be a long way from general availability, Microsoft is offering to help get it set up for production use today.

The company said in a post last week: "If you are using ML.NET in your app and looking to go into production, you can talk to an engineer on the ML.NET team to:

  • Get help implementing ML.NET successfully in your application.
  • Provide feedback about ML.NET.
  • Demo your app and potentially have it featured on the ML.NET homepage, .NET Blog, or other Microsoft channel.

Microsoft provided a form to fill out for that feedback mechanism, which asks a series of questions and lets developers leave their contact information if they want someone from the ML.NET team to contact them.

In the meantime, the team said all future releases leading up to version 1.0 will focus on stability, with API refinements, bug fixes, reduction of the public API surface, improved documentation and samples, and more.

Two notable highlights of the 0.11 update were listed as: new capabilities to support text input when working with the popular TensorFlow, which facilitates working with text analysis scenarios such as sentiment analysis; some renaming of ONNX-related terms "to make the distinction between ONNX conversion and transformation clearer." ONNX is an open and interoperable model format that lets developers take models trained in one ML framework and use them in another framework.

About the Author

David Ramel is an editor and writer at Converge 360.

comments powered by Disqus

Featured

  • Hands On: New VS Code Insiders Build Creates Web Page from Image in Seconds

    New Vision support with GitHub Copilot in the latest Visual Studio Code Insiders build takes a user-supplied mockup image and creates a web page from it in seconds, handling all the HTML and CSS.

  • Naive Bayes Regression Using C#

    Dr. James McCaffrey from Microsoft Research presents a complete end-to-end demonstration of the naive Bayes regression technique, where the goal is to predict a single numeric value. Compared to other machine learning regression techniques, naive Bayes regression is usually less accurate, but is simple, easy to implement and customize, works on both large and small datasets, is highly interpretable, and doesn't require tuning any hyperparameters.

  • VS Code Copilot Previews New GPT-4o AI Code Completion Model

    The 4o upgrade includes additional training on more than 275,000 high-quality public repositories in over 30 popular programming languages, said Microsoft-owned GitHub, which created the original "AI pair programmer" years ago.

  • Microsoft's Rust Embrace Continues with Azure SDK Beta

    "Rust's strong type system and ownership model help prevent common programming errors such as null pointer dereferencing and buffer overflows, leading to more secure and stable code."

  • Xcode IDE from Microsoft Archrival Apple Gets Copilot AI

    Just after expanding the reach of its Copilot AI coding assistant to the open-source Eclipse IDE, Microsoft showcased how it's going even further, providing details about a preview version for the Xcode IDE from archrival Apple.

Subscribe on YouTube

Upcoming Training Events