News

VS Code Improves ML Model Training with Python

Using Python in Visual Studio Code for machine learning model training and experimentation is easier in the February 2021 update to the tool that fosters Python programming in Microsoft's popular, open source, cross-platform code editor.

That ease comes with new integration with TensorBoard, the visualization toolkit for TensorFlow, a leading open source ML platform used for developing and training ML models created by Google. Its primary use is for visualizing model graphs, metrics and other data patterns.

Working with TensorBoard in VS Code
[Click on image for larger view.] Working with TensorBoard in VS Code (source: Microsoft).

"TensorBoard is a data science companion dashboard that helps PyTorch and TensorFlow developers visualize their dataset and model training," said Jeffrey Lew of the VS Code Python team in announcing the February update. " With TensorBoard directly integrated in VS Code, you can spot check your models' predictions, view the architecture of your model, analyze you model's loss and accuracy over time, profile your code to find out where it's the slowest, and much more!"

The new update also improves the Pylance extension (specifically, docstring readability) that serves as the language server for VS Code, leveraging the Language Server Protocol to provide Python-specific "smarts" in the editor such as autocomplete and smart completions (IntelliSense), error-checking (diagnostics), jump-to-definition, linting and corrections, find all references and so on.

Several other fixes and new features, such as tweaks to improve code navigation by streamlining go to definition and go to declaration behavior.

By far the most popular extension in the Visual Studio Code Marketplace, the Python tool has been downloaded more than 31.5 million times.

About the Author

David Ramel is an editor and writer at Converge 360.

comments powered by Disqus

Featured

  • Compare New GitHub Copilot Free Plan for Visual Studio/VS Code to Paid Plans

    The free plan restricts the number of completions, chat requests and access to AI models, being suitable for occasional users and small projects.

  • Diving Deep into .NET MAUI

    Ever since someone figured out that fiddling bits results in source code, developers have sought one codebase for all types of apps on all platforms, with Microsoft's latest attempt to further that effort being .NET MAUI.

  • Copilot AI Boosts Abound in New VS Code v1.96

    Microsoft improved on its new "Copilot Edit" functionality in the latest release of Visual Studio Code, v1.96, its open-source based code editor that has become the most popular in the world according to many surveys.

  • AdaBoost Regression Using C#

    Dr. James McCaffrey from Microsoft Research presents a complete end-to-end demonstration of the AdaBoost.R2 algorithm for regression problems (where the goal is to predict a single numeric value). The implementation follows the original source research paper closely, so you can use it as a guide for customization for specific scenarios.

  • Versioning and Documenting ASP.NET Core Services

    Building an API with ASP.NET Core is only half the job. If your API is going to live more than one release cycle, you're going to need to version it. If you have other people building clients for it, you're going to need to document it.

Subscribe on YouTube