More C++ Classes: Copy and Move Semantics: Listing 3

A binary tree with copy and move semantics.

// unbalanced_binary_tree.h
#ifndef UNBALANCED_BINARY_TREE_H
#define UNBALANCED_BINARY_TREE_H

// uncomment this line to enable move semantics; comment it to disable it.
//#define MOVE_SEMANTICS

#include <memory>
#include <initializer_list>
#include <vector>
#include <iostream>
#include <utility>

using namespace std;

namespace unbalanced_binary_tree {
  template <typename T>
  class tree
  {
  public:
  // default constructor. Empty tree.
  tree() : root_{ nullptr }
  { cout << "Creating empty tree (default constructor)." << endl; }

  // this constructor makes a tree from an array of elements.
  tree(const initializer_list<T> elements) : tree{}
  {
    cout << "Populating tree from initializer list (" << elements.size() << " elements)..." << endl;

    for (auto element : elements)
    *this << element;
    }

    // copy constructor.
    tree(const tree<T>& other) : tree{}
    {
      cout << "Beginning tree copy-construction..." << endl;

      // if the other tree isn't empty, it's copied from its root.
      if (!other.is_empty()) root_.reset(new node{*(other.root_)});
    }

#ifdef MOVE_SEMANTICS
    // move constructor
    tree(tree<T>&& other) : root_{ move(other.root_) }
    { cout << "Last tree constructed with move-constructor." << endl; }
#endif // MOVE_SEMANTICS

    // destructor.
    ~tree() { cout << "Deleting tree..." << endl; };

    // copy assignment.
    tree& operator=(const tree<T>& other)
    {
      cout << "Beginning tree copy-assignment..." << endl;

      if (this == &other) return *this; // handle self-assignment

      // if the tree at the left-side of the assignment isn't empty,
      // it's cleared. Existing nodes are deleted.
      if (!is_empty())
      {
        cout << "Clearing out previous content at left-side..." << endl;
        root_.reset(nullptr);
      }

      // if the other tree isn't empty, it's copied from its root.
      if (!other.is_empty()) root_.reset(new node{*(other.root_)});

      return *this;
    }


#ifdef MOVE_SEMANTICS
    // move assignment
    tree& operator=(tree<T>&& other)
    {
      cout << "Beginning tree move-assignment..." << endl;

      // if the tree at the left-side of the assignment isn't empty,
      // it's cleared. Existing nodes are deleted.
      if (!is_empty())
      {
        cout << "Clearing out previous content at left-side..." << endl;
        root_.reset(nullptr);
      }
      // if the other tree isn't empty, its root is moved.
      if (!other.is_empty())
      {
        cout << "Moving root to the left-side." << endl;
        root_ = move(other.root_);
      }

      return *this;
    }
#endif // MOVE_SEMANTICS

    // pushes an element to the tree. At the root if empty
    // Or in the left branch if less or equal than the root value. In the right branch otherwise.
    friend tree& operator<<(tree& t, const T element)
    {
      // if the tree is empty, the root is just inaugurated.
      if (t.is_empty()) t.root_.reset(new node{element});
      // otherwise, the element is pushed from the root downward
      else (t.root_)->push_back(element);

      return t;
    }

    // true if the tree is not empty.
    bool is_empty() const
    { if (root_) return false; else return true; }

    // returns the tree elements in a vector. Order is undetermined.
    vector<T> to_vector() const
    {
      vector<T> v;

      if (!is_empty()) push_branch_to_vector(v, *root_);

      return v;
    }
  private:
    // Type node as a nested class of tree
    class node {
    public:
      // there's no default constructor
      // constructs a single node with the received value.
      node(const T value) : node_value_{value}, left_branch_{nullptr}, right_branch_{nullptr}
      { cout << "Creating leaf(" << value << ")." << endl; }

      // copy-constructor
      node(const node& other) : node_value_{other.node_value_},
        left_branch_{other.left_branch_ ? new node{*(other.left_branch_)} : nullptr},
        right_branch_{other.right_branch_ ? new node{*(other.right_branch_)} : nullptr}
      { cout << "Node(" << node_value_ << ") copy-constructed." << endl; }

      // destructor
      ~node() { cout << "Destroying node(" << node_value_ << ")." << endl; };

      // no copy-assignment
      node& operator=(const node& other) = delete;

      T value() const
      { return node_value_; }

      // pushes the received value to the left branch if less or equal than the node value. To the right branch otherwise.
      node& push_back(const T value) {
        if (value<=node_value_) {
          // if the left branch is not empty, the value is recursively pushed into.
          if (left_branch_) { left_branch_->push_back(value); }
          // if empty, it just gets inaugurated.
          else
          {
            cout << "At the left branch of node(" << node_value_ << "): ";
            left_branch_.reset(new node{value});
          }
        } else {
          // same comments about left_branch_ apply at the right one.
          if (right_branch_) { right_branch_->push_back(value); }
          else
          {
            cout << "At the right branch of node(" << node_value_ << "): ";
            right_branch_.reset(new node{value});
          }
        }

        return *this;
      }

      friend void push_branch_to_vector(vector<T>& v, const node& n)
      {
        v.push_back(n.value());
        if (n.left_branch_) push_branch_to_vector(v, *n.left_branch_);
        if (n.right_branch_) push_branch_to_vector(v, *n.right_branch_);
      }
    private:
      T node_value_;
      unique_ptr<node> left_branch_, right_branch_;
    };

    unique_ptr<node> root_;
  };
}

#endif // UNBALANCED_BINARY_TREE_H



// main.cpp
#include "unbalanced_binary_tree.h"
#include <string>
#include <vector>

using namespace unbalanced_binary_tree;
using namespace std;

tree<unsigned> make_word_size_tree(const tree<string>& word_tree) {
  cout << "Inside function make_word_size_tree()..." << endl;
  vector<string> words = word_tree.to_vector();

  cout << "tree<unsigned> t; // local variable declaration" << endl;
  tree<unsigned> t;

  for (auto word : words)
    t << word.size();

  cout << "Leaving function make_word_size_tree(). Local tree<unsigned> t about to lose visibility..." << endl;
  return t;
}

int main(int argc, char* argv[]) {
  cout << "tree<unsigned> integer_tree = { 1, 3, 5, 4 };" << endl;
  tree<unsigned> integer_tree = { 1, 3, 5, 4 };

  cout << endl << "tree<unsigned> it2 = integer_tree;" << endl;
  tree<unsigned> it2 = integer_tree;

  cout << endl << "tree<string> lincoln_tree;" << endl;
  tree<string> lincoln_tree;

  cout << "lincoln_tree << \"give\" << \"me\" << \"six\" << (...) << \"axe\";" << endl;
  lincoln_tree << "give" << "me" << "six" << "hours"
    << "to" << "chop" << "down" << "a" << "tree"
    << "and" << "I" << "will" << "spend" << "the" << "first" << "four"
    << "sharpening" << "the" << "axe";

  cout << endl << "integer_tree = make_word_size_tree(lincoln_tree);" << endl;
  integer_tree = make_word_size_tree(lincoln_tree);

  cout << endl << "it2 = integer_tree;" << endl;
  it2 = integer_tree;

  cout << endl << "Function main() finishing. Variables integer_tree, it2 and lincoln_tree about to lose visibility." << endl;
}

About the Author

Diego Dagum is a software architect and developer with more than 20 years of experience. He can be reached at [email protected].

comments powered by Disqus

Featured

  • Full Stack Hands-On Development with .NET

    In the fast-paced realm of modern software development, proficiency across a full stack of technologies is not just beneficial, it's essential. Microsoft has an entire stack of open source development components in its .NET platform (formerly known as .NET Core) that can be used to build an end-to-end set of applications.

  • .NET-Centric Uno Platform Debuts 'Single Project' for 9 Targets

    "We've reduced the complexity of project files and eliminated the need for explicit NuGet package references, separate project libraries, or 'shared' projects."

  • Creating Reactive Applications in .NET

    In modern applications, data is being retrieved in asynchronous, real-time streams, as traditional pull requests where the clients asks for data from the server are becoming a thing of the past.

  • AI for GitHub Collaboration? Maybe Not So Much

    No doubt GitHub Copilot has been a boon for developers, but AI might not be the best tool for collaboration, according to developers weighing in on a recent social media post from the GitHub team.

  • Visual Studio 2022 Getting VS Code 'Command Palette' Equivalent

    As any Visual Studio Code user knows, the editor's command palette is a powerful tool for getting things done quickly, without having to navigate through menus and dialogs. Now, we learn how an equivalent is coming for Microsoft's flagship Visual Studio IDE, invoked by the same familiar Ctrl+Shift+P keyboard shortcut.

Subscribe on YouTube